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Motivation

A necessary, but not sufficient, condition of true inferential reasoning is the ability for natural language 
inference (NLI) models to utilize all parts of the example’s input. 

A man wearing a white shirt and blue 
jeans as well as a mask over his 
mouth stokes a fire.

Natural language inference: predicting a directional relationship between pairs of text expressions
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A guy in cloth pants and shirt 
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protect his lungs puts out a fire.



Motivation

Recent work has illustrated the presence of annotation artifacts1, or statistical biases, in parts of NLI 
instances (e.g. the hypothesis) that are predictive of the correct label.
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Motivation

Some suggest that the presence of such artifacts in datasets may in turn produce models that are 
incapable of learning to perform true reasoning.

Recent work has illustrated the presence of annotation artifacts1, or statistical biases, in parts of NLI 
instances (e.g. the hypothesis) that are predictive of the correct label.
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Motivation

One way to detect the presence of artifacts in datasets through a partial-input baseline2 in which only 
parts of NLI instances (e.g. only the hypothesis) are fed to a model trained to predict an entailment label.
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blue jeans as well as a mask over 
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Motivation

A strong partial-input baseline suggests that full input models can use “shortcuts” present in parts of the 
input to boost their performance.

One way to detect the presence of artifacts in datasets through a partial-input baseline2 in which only 
parts of NLI instances (e.g. only the hypothesis) are fed to a model trained to predict an entailment label.
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Motivation

Central Question: Do NLI models learn to condition on context despite being trained on 
artifact-ridden datasets? 
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Contributions

Does access to context strengthen a full-input 
model’s confidence in the correct label, despite a 
partial-input model’s correct prediction?

Experiment 1

We investigate the role of context in NLI models through two sets of experiments.

Yes! Full-input models are more 
confident in the correct label than 
partial-input models. 

Finding
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despite the artifacts in parts of the 
input.
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Experiment 1: Context in NLI

Does access to context shift a full-input model’s confidence in the correct label?
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Experiment 1: Context in NLI

Yes! Access to context strengthens a full-input model’s confidence in the correct label.
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Experiment 2: Context Editing

Are full-input models sensitive to changes in non-target components of the input (e.g. perturbations in the premise?)

We present an example modification scheme in which we edit context sentences from examples where a 
model correctly predicts the label from the target alone. 



Context Editing

Are full-input models sensitive to changes in non-target components of the input (e.g. perturbations in the premise?)

We present an example modification scheme in which we edit context sentences from examples where a 
model correctly predicts the label from the target alone. 

A little girl in a 

pink hat is in a lush 

green field walking 

an ox.

A little girl in a pink 

hat sits on an ox 

carrying her through the 

middle of the Sahara.

✎

A little girl is riding 

her ox in a desert.
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Experiment 2: Context Editing

Yes! Full-input models  are sensitive to changes in non-target components of the input

Original 
Label (l)

Edited Label (l’)

e n c

e - 0.76 0.76

n 0.42 - 0.78

c 0.90 0.78 -

SNLI  

Consistent achievement of above 70% 
accuracy on edited examples illustrates 
full-input models are in fact sensitive to 
context modifications! 



Experiment 2: Context Editing

Are full-input models sensitive to changes in non-target components of the input (e.g. perturbations in the premise?)

High Density

Low Density

Contradiction (l) → Entailment (l’)

Original 
Label (l)

Edited Label (l’)
e n c

e - 0.76 0.76
n 0.42 - 0.78
c 0.90 0.78 -

SNLI  

Heatmap of 
confidences plotted 
on the simplex shows 
shift when gold label 
is flipped through an 
edit to the premise!

Consistent achievement of above 70% accuracy 
on edited examples illustrates full-input models 
are in fact sensitive to context modifications. 
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Main Takeaway

It is hasty to conclude that models trained on artifact-ridden datasets are not capable of reasoning. 

Even though high-scoring partial-input baselines show that full-input models could ignore context, our experiments 
show they don’t: they can leverage this context quite effectively.
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Key Takeaways

NLI models can and do 
meet one of the necessary 
conditions for reasoning: 
leveraging the full input.

This isn’t a sufficient, but inherently 
necessary.

Conclusion 1

Partial-input baselines 
should be understood as 
agnostic warning signs.
They are sufficient to conclude that 
full-input models might not be 
leveraging critical context, but 
insufficient to prove that they 
don’t.

Of course, artifacts can and do lead 
to models with exploitable 
heuristics, but:

Artifacts don’t necessarily 
spell disaster for a model’s 
reasoning capabilities!

Conclusion 2 Conclusion 3

It is hasty to conclude that models trained on artifact-ridden datasets are not capable of reasoning. 

Even though high-scoring partial-input baselines show that full-input models could ignore context, our experiments 
show they don’t: they can leverage this context quite effectively.

Main Takeaway
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